Differential recovery of retinal function after mitochondrial inhibition by methanol intoxication.
نویسندگان
چکیده
PURPOSE The authors' laboratory has previously documented formate-induced retinal toxicity in a rodent model of methanol intoxication. These studies determined functional, bioenergetic, and structural recovery of the retina after methanol intoxication. METHODS Rats were intoxicated with methanol, and retinal function was assessed by electroretinography 72 hours after the initial dose of methanol and after a 72-hour recovery period. Retinal energy metabolites, glutathione (GSH) concentrations, and histology were determined at the same time points. RESULTS Both rod-dominated and UV-cone-mediated electroretinogram responses were profoundly attenuated in methanol-intoxicated rats. In rats allowed to recover from methanol intoxication, there was significant, although incomplete, recovery of rod-dominated retinal function. However, there was no demonstrable improvement in UV-cone-mediated responses. Retinal adenosine triphosphate (ATP), adenosine diphosphate (ADP), and GSH concentrations were significantly reduced after intoxication. Although retinal energy metabolites returned to control values after the recovery period, retinal GSH remained significantly depleted. Histopathologic changes were apparent in the photoreceptors after methanol intoxication, with evidence of inner segment swelling and mitochondrial disruption. In animals allowed to recover from methanol intoxication, there was no evidence of histopathology at the light microscopic level; however, ultrastructural studies revealed subtle photoreceptor mitochondrial alterations. CONCLUSIONS These findings support the hypothesis that formate inhibits retinal mitochondrial function and increases oxidative stress. They also provide evidence for a differential sensitivity of photoreceptors to the cytotoxic actions of formic acid, with a partial recovery of rod-dominated responses and no recovery of UV-cone-mediated responses.
منابع مشابه
Formate-induced inhibition of photoreceptor function in methanol intoxication.
Formic acid is the toxic metabolite responsible for the retinal and optic nerve toxicity produced in methanol intoxication. Previous studies in our laboratory have documented formate-induced retinal dysfunction and histopathology in a rodent model of methanol intoxication. The present studies define the time and concentration dependence of formate-induced retinal toxicity in methanol-intoxicate...
متن کاملTherapeutic photobiomodulation for methanol-induced retinal toxicity.
Methanol intoxication produces toxic injury to the retina and optic nerve, resulting in blindness. The toxic metabolite in methanol intoxication is formic acid, a mitochondrial toxin known to inhibit the essential mitochondrial enzyme, cytochrome oxidase. Photobiomodulation by red to near-IR radiation has been demonstrated to enhance mitochondrial activity and promote cell survival in vitro by ...
متن کاملEffect of Methanol intoxication on the Function of Retina of Rabbit
Methanol is an ideal candidate to replace fossil fuels. However, alterations in the retinal function are primarily associated with methanol intoxication. In the present work, chronic methanol intoxication was carried out in New Zealand rabbits previously depleted of foliates with methotrexate. We analyze the effect of long-term alcohol consumption on oxidative stress parameters of the rabbit re...
متن کاملChromon-3-aldehyde derivatives restore mitochondrial function in rat cerebral ischemia
Objective(s): This work aimed to assess the effect of 10 new chromon-3-aldehyde derivatives on changes of mitochondrial function under the conditions of brain ischemia in rats. Materials and Methods: The work was executed on BALB/c male-mice (acute toxicity was evaluated) and male Wistar rats, which were used to model cerebral ischemia b...
متن کاملMethanol extract and fraction of Anchomanes difformis root tuber modulate liver mitochondrial membrane permeability transition pore opening in rats
Objective: Extracts of Anchomanes difformis (AD) are used in folkloric medicine to treat several diseases and infections. However, their roles in mitochondrial permeability transition pore opening are not known. Material and Methods: The viability of mitochondria isolated from Wistar rat liver used in this experiment, was assessed by monitoring their swel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 42 3 شماره
صفحات -
تاریخ انتشار 2001